Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Cell Rep ; 43(4): 114061, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38578831

Brain cells release and take up small extracellular vesicles (sEVs) containing bioactive nucleic acids. sEV exchange is hypothesized to contribute to stereotyped spread of neuropathological changes in the diseased brain. We assess mRNA from sEVs of postmortem brain from non-diseased (ND) individuals and those with Alzheimer's disease (AD) using short- and long-read sequencing. sEV transcriptomes are distinct from those of bulk tissue, showing enrichment for genes including mRNAs encoding ribosomal proteins and transposable elements such as human-specific LINE-1 (L1Hs). AD versus ND sEVs show enrichment of inflammation-related mRNAs and depletion of synaptic signaling mRNAs. sEV mRNAs from cultured murine primary neurons, astrocytes, or microglia show similarities to human brain sEVs and reveal cell-type-specific packaging. Approximately 80% of neural sEV transcripts sequenced using long-read sequencing are full length. Motif analyses of sEV-enriched isoforms elucidate RNA-binding proteins that may be associated with sEV loading. Collectively, we show that mRNA in brain sEVs is intact, selectively packaged, and altered in disease.


Alzheimer Disease , Brain , Extracellular Vesicles , RNA, Messenger , Extracellular Vesicles/metabolism , Humans , RNA, Messenger/metabolism , RNA, Messenger/genetics , Brain/metabolism , Animals , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Neurons/metabolism , Astrocytes/metabolism , Microglia/metabolism , Transcriptome/genetics , Mice, Inbred C57BL
2.
Nat Commun ; 15(1): 2511, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38509069

In situ transcriptomic techniques promise a holistic view of tissue organization and cell-cell interactions. There has been a surge of multiplexed RNA in situ mapping techniques but their application to human tissues has been limited due to their large size, general lower tissue quality and high autofluorescence. Here we report DART-FISH, a padlock probe-based technology capable of profiling hundreds to thousands of genes in centimeter-sized human tissue sections. We introduce an omni-cell type cytoplasmic stain that substantially improves the segmentation of cell bodies. Our enzyme-free isothermal decoding procedure allows us to image 121 genes in large sections from the human neocortex in <10 h. We successfully recapitulated the cytoarchitecture of 20 neuronal and non-neuronal subclasses. We further performed in situ mapping of 300 genes on a diseased human kidney, profiled >20 healthy and pathological cell states, and identified diseased niches enriched in transcriptionally altered epithelial cells and myofibroblasts.


Gene Expression Profiling , RNA , Humans , RNA/genetics , In Situ Hybridization , Gene Expression Profiling/methods , Transcriptome , Cytosol
3.
Methods Mol Biol ; 2561: 31-42, 2023.
Article En | MEDLINE | ID: mdl-36399263

Resolving the complexity of the human brain at the level of single cells is essential to gaining an understanding of the immense diversity of cell types and functional states in both healthy and diseased brains. To exploit fully the technologies available for such studies, one must extract and isolate pure nuclei from unfixed postmortem tissue while preserving the molecules to be interrogated. Currently, nuclei are necessary substitutes for individual brain cells, since myriad cell types/sub-types constituting the human brain are embedded within the neuropil-a complex milieu of interconnected cells, processes, and synapses-which precludes intact and selective isolation of single brain cells. Here, we describe a protocol for the extraction and purification of intact single nuclei from frozen human brain tissue along with modifications to accommodate numerous downstream analyses, particularly for transcriptomic applications.


Brain , Cell Nucleus , Humans , Freezing , Cell Nucleus/metabolism , Transcriptome , Neuropil
4.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Article En | MEDLINE | ID: mdl-34795060

Down syndrome (DS), trisomy of human chromosome 21 (HSA21), is characterized by lifelong cognitive impairments and the development of the neuropathological hallmarks of Alzheimer's disease (AD). The cellular and molecular modifications responsible for these effects are not understood. Here we performed single-nucleus RNA sequencing (snRNA-seq) employing both short- (Illumina) and long-read (Pacific Biosciences) sequencing technologies on a total of 29 DS and non-DS control prefrontal cortex samples. In DS, the ratio of inhibitory-to-excitatory neurons was significantly increased, which was not observed in previous reports examining sporadic AD. DS microglial transcriptomes displayed AD-related aging and activation signatures in advance of AD neuropathology, with increased microglial expression of C1q complement genes (associated with dendritic pruning) and the HSA21 transcription factor gene RUNX1 Long-read sequencing detected vast RNA isoform diversity within and among specific cell types, including numerous sequences that differed between DS and control brains. Notably, over 8,000 genes produced RNAs containing intra-exonic junctions, including amyloid precursor protein (APP) that had previously been associated with somatic gene recombination. These and related results illuminate large-scale cellular and transcriptomic alterations as features of the aging DS brain.


Aging/physiology , Down Syndrome/metabolism , RNA Isoforms/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Brain/metabolism , Chromosomes, Human, Pair 21 , Core Binding Factor Alpha 2 Subunit/metabolism , Down Syndrome/genetics , Gene Expression , Humans , Microglia , RNA/metabolism , Sequence Analysis, RNA , Up-Regulation
5.
Vaccine ; 38(7): 1652-1660, 2020 02 11.
Article En | MEDLINE | ID: mdl-31959422

Current inactivated polio vaccine (IPV) products are sensitive to both freezing and elevated temperatures and therefore must be shipped and stored between 2 °C and 8 °C, a requirement that imposes financial and logistical challenges for global distribution. As such, there is a critical need for a robust, thermally stable IPV to support global polio eradication and post-eradication immunization needs. Here, we present the development of air-dried thin films for temperature stabilization of IPV using the biomaterial silk fibroin. Thin-film product compositions were optimized for physical properties as well as poliovirus D-antigen recovery and were tested under accelerated and real-time stability storage conditions. Silk fibroin IPV films maintained 70% D-antigen potency after storage for nearly three years at room temperature, and greater than 50% potency for IPV-2 and IPV-3 serotypes at 45 °C for one year. The immunogenicity of silk fibroin IPV films after 2-week storage at 45 °C was assessed in Wistar rats and the stressed films generated equivalent neutralizing antibody responses to commercial vaccine for IPV-1 and IPV-2. However, the absence of IPV-3 responses warrants further investigation into the specificity of ELISA for intact IPV-3 D-antigen. By demonstrating immunogenicity post-storage, we offer the air-dried silk film format as a means to increase IPV vaccine access through innovative delivery systems such as microneedles.


Fibroins/chemistry , Immunogenicity, Vaccine , Poliovirus Vaccine, Inactivated/chemistry , Poliovirus Vaccine, Inactivated/immunology , Temperature , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Drug Storage , Poliomyelitis/prevention & control , Rats , Rats, Wistar
...